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LETTER TO THE EDITOR 

Quantum inverse problem for the Ablowitz-Ladik open chain 

A Roy Chowdhury and N Dasgupta 
High Energy Physics Division, Department of Physics, Jadavpur Univenity, Calcutta 
700 032, India 

Received 23 February 1993 

Abstract. The integrable nonlinear discrete system of Ablowitz-Ladik'is investigated from 
the viewpoint of the quantum inverse scattering transform with non-trivial boundary 
wnditions at the two ends. A new type of quantum R-matrix is obtained, which has been 
used to set up the algebraic Bethe ansa= equations. The asymptotic R-matrices R, (as A, 
or +to) are similar to the non-standard solution of the Yang-Baxter equation. 

Integrable systems are usually classified in two groups-continuous and discrete. In 
both situations the existence of a Lax pair is essential, from which one can start either 
with classical or quantum inverse scattering to study the properties of the nonlinear 
systems. In this respect the classical (r) and quantum (R) m a t h s  have animportant 
role to play [l]. Already several types of solutions of classical and quantum Yang-Baxter 
equations have been obtained which correspond to different discrete and continuous 
models [2]. Here in this letter we have developed the quantum inverse scattering 
method for the discrete hierarchy of Ablowitz andtadik [3]. In this process, new types 
of I- and R-matrices are obtained. The R-matrix is then used to set up the algebraic 
Bethe ansatz equation for the construction of the excited states of the model. Inciden- 
tally, we do not use the, usual periodic boundary conditions but, rather, non-trivial 
different boundary conditions at the two ends, following the formalism of Sklyanin 
[4]. The asymptotic R-matrices R, as h or p+ *CO are seen to be very similar to the 
non-standard solutions of the quantum Yang-Baxter equation [5 ] .  

The discrete integrable equations of Ablowitz and Ladik can be wiitten as 

aR, . 
-= ~ ( l *  R,Rz)(*Sz+ S:-l) 

A t  ' 

which is obtained as a reduced set~of four coupled equations for (R", S,, T., Q.) under 
R. =T@ and S. =FE:. This is actually a generalization of the discrete NLS model 
discussed by Kulish: However, our following consideration is valid for the whole 
hierarchy generated by equation (Z), which can be written in terms of four discrete 
time-dependent variables (R,,, S.,'Q., T.). The Lax pair associated with~this set is 
written as 

K+* = &Un 
where 

Z+R,S. Q.+Z-'S. 
R. + ZT, Z-"t Q.T. 

L" = (p.v.) -"2 

0305-4470/93/130583tM$07.50 0 1993 IOP Publishing Ltd 



I584 Letter to the Editor 

with pn = 1 - Q.R, and U. = 1 -S,T,. The classical Poisson structure associated with 
equation (1) was discussed by Kako and Mugibayashi 161. For any two arbitrary 
fun.cti0nal.s F and G of the field variables (Q, R,, S. and T.) the Poisson bracket is 
written as [6] 

{ F, G} = ( VF, TV G) 

It can be easily observed that system (2) is a direct generalization of the discrete 
nonlinear Schrodinger equation discussed earlier by Kulish [7]. Our first observation 
is that the Poisson brackets-between the elements of the matrix L (2) can be written as 

{L(6),@ L ( - W = [ r ( t ,  z), L(E)@1)(1@L(~))I (4) 
j 

where the classical r(A, p)  matrix is of the following form: 

0 
1 

2 wth(A - p )  
- 0 

where we have set e= e2" and 2 = e''. Once we have determined the classical r-matrix 
it is not difficult to obtain its quantum counterpart. For this we will have to solve the 
equation 

Wz, 5W'(~W216) =L2(5)L'(Z)R(2, 5) (6) 

where the Poisson brackets 

are to be interpreted as commutators with fi multiplied: 
To solve equation (6) we pick out coefficients of different combinations of ei,@ew, 

where e, denotes the standard matrix with 'I' only at, the intersection of ith row and 
j th  column, and rearrange the nonlinear variable Qn, R., etc, following equation (7). 
Actually, we use 

[Qm Rm1=fi(l-QnRm)Snm 

[S", Tm1=fi(1-S.T,)S.,. 

RLLIz(z)LII(S) = R:%&)LII(z) + R%(S)LZ(Z). 

Consider the coefficient of el2@e1, in equation (6), which gives 

( 8 )  
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Collecting coefficients of Q., S,, and Q.R.S., we get 
R::(C--z)= -R::hC 

L585 

(9) 

R;; (~-z)  = R::[5-z(l+ h ) ] .  

SimilarIy, from the coefficient of elfQezz we get 

R::LII(z)L~z(S)+R::L~I(Z)LIZ(~) =R::LzzWL.. . IR::L(5) .z(z) (10) 

ZR;~ = CR:: (11) 

from terms which are independent of nontinear fields, 

and from the terms, which are coefficient of Q.Rn we get 

(l+h)R::(;-l)=R:: h. (12) 

Lastly, from the coefficient of ez,Qezz we obtain 

R::z= R : ; ~ + R ~ z .  (13) 
Equations (9) and (11)-(13) are sufficient to extract information on the matrix elements 
of R. Using the new variables (1 + h =eZ’, z = e , 5 =ezp) we at once amve at the 
quantum R-matrix given below: 

Z* 

r l  0 0 0 1  
e’ sinh(h - p)  e*-* sinh y 

n- smh(h -p+ r) sinh(h - U + r )  
e”-’ sinh y e-y sin(h -p) 

smh(h -p+ r) sinh(A-p+ y )  

LO 0 0 1 1  
It may be added that there are more equations coming from coefficients of other 

As an important property we mention that his R-matrix has the desired property 
eijQekl. We have checked explicitly that they are all satisfied. 

that, as h+O, 

sinh(h-p+y) 
R=l-hir 

sinh(h -p) 

r being given in equation ( 5 ) .  
The quantum R-matrix determined above has the distinct feature that it has far 

less symmetry than those determined for other cases. To classify it further we note 
some of its properties below: 

(i) Unitarity, 

RIZ(U)RX-U)= I (15) 

where I stands for the unit matrix and PlZR12(~)PlZ = Rzl .  
(ii) PT symmetry, 

PIZRIZ(U)PIZ= RZI (16) 

where PIz is a permutation operator. 
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(iii) Crossing unitarity, 

where 

M=("' 0 er O) 

and the superscripts tl and t2 denote, respectively, transpose in the first and second 
spaces. 

Now, for a discrete system with open ends the non-trivial boundary conditions are 
usually determined by two matrices. K- and K, to be determined by the Sklyanin 
equations, 

RI2(u - u)lc(u)R2,(u+ u-r)K(u) = K-( V)R12(u+ U -r)IL(u)R21(u -U). (18) 
However, due to the asymmetric nature of R, K+ is to be obtained from a different 
condition involving the matrix M :  

I 2 2 I 

I 1 + U)K>(~)(M)-~R,,(-~ - -zy)i&2(u) 
1 

= Kf:(u)MRI2(-u - ~ - 2 y ) ( h ) - ' ~ ~ ( u ) R ~ ~ ( - u  - U) (19) 
whence K+ and K- tum out to be diagonal matrices determined as 

The quantum inverse problem now requires the setting up of commutation rules for 
the scattering data via the R-matrix, taking into consideration the requirement of an 
open chain. The Sklyanin-type commutation relations can be written as 

1 1 
R12(u - u)T(u)RZ1(u+u - r )T2(u)  = T2(u)R12(u+ u - r)T(u)R2,(u - u )  (21) 
where T represents the scattering data written as 

. = ( A  C D '  ") 
However, for the diagonalization of the algebraic Bethe ansatz it is convenient to define 
a different combination of the basic scattering data through the adjoint. For that we note 

IO 0 0 01 

R'(h - p = -7) = sinh y 1: :I 
l o  0 0 01 

where R'(A - p )  = R(h - p )  sinh(h - p+ y),  and 

IO 0~ ' 0 ' o\ 
P12 = - 

lo 0 0 01 
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obey the condition 

(plz)2 = p;2 

so that it is a projection operator. Thus we set 

f i (u )  = (eY+eC) tr2P;b(u)k'R:(2u) (25) 
which _ - _  defines the adjoint of the scattering data T. Let us designate the elements of fi 
as (A, B, C and 6). It immediately follows that 

D(u)  ewy sinh 2u A ( u )  e-2u sinh - 
sinh(u + y) sinh( u + y) 

i ( u )  = e? 

It is now straightforward but laborious to deduce from equations (17) and (22) the 
following commutation rules: 

sinh(u + U - y) sinh( u - U + y) 
sinh(u + U) sinh(u -U) A ( u ) B ( u )  = - B ( u ) A ( u )  

B(u)&u) 
e-"-" sinh y sinh(2u+ y )  

sinh 2u sinh(u+u) 
- 

e"-" sinh y sinh(2u - y )  

sinh(u-u) sinh2u + B ( u ) A ( v )  

along with 

B(v)&u)  
sinh(u -U + y )  sinh(u + U + y) 

sinh(u - v )  sinh(u + U) & u ) B ( v ) =  

e"+"sinh y sinh(2u-y) 
sinh( u + U) sinh 2 u ~  + B ( u ) A ( u )  

e'-" sinh y sinh(2u + y) 
sinh 2u sinh(u - U) 

- B ( u ) f i ( u ) ,  

The conserved quantities are given as 

T r K + ( u ) T ( u ) = t ( u )  

which can be used as the Hamiltonian of the system. Using equation (22) we obtain 

sinh 2u + elr-" sinh y ) A ( u )  
1 

sinh 2u 
t ( u )  =- ' 

e2"+x--y 

sinh 2u 
+-sinh(2u+ y ) 6 ( u ) .  

Now from the basic commutation relations we can infer that a vacuum state exists 
which has the property ~ 

R.IO)= T,lO)=O (31) 
whence the multiparticle excitation is constructed by repeated appli&tion of B(AJ on 
IO), that is, 

I f l ) = B ( A i ) B ( A d . .  . B(An)lO) (32) 
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and 

4 4 1 0 )  = 4u)lO) @u)lO)= d(u)lO). 

R, = 

Now, following the usual procedure we determine the eigenvalue equation for the 
n-particle state to be 

-- -e-2ht sinh(2Aj+y) A,(% Ai) 
d(&)  sinh(2A: - y )  AZ( U, Ai) 

" sinh(Ai -Aj+ y )  sinh(A,+Aj+ y )  
x n .  ieismh(Aj-Aj- y )  sinh(Ai+Aj-y) 

where A,, Az are defined as follows: 

Al(u, A,) = e-" sinh(u - A , ) u ( u )  + e' sinh(u +AJq(u) 

A*( U, Ai) =e-" sinh(u +.\;)U( U) +eu sinh( u -A;)V( U) 

0 1  
0 l-e-2' e-".. :I. 

, o  0 0 1  

(33) 

where 

u(u)=- 
sinh 2u 

In contrast, the eigenvalue of the nth excited state is given as 

" sinh(u +Ai - y )  sinh(u - Az - y )  
1-1 sinh(u+A,) sinh(u-A,) E. =-.(U) ll 

So, in the above analysis we have shown how it is possible to develop an analogue of 
the algebraic Bethe ansatz for the Ablowitz-Ladik-type open chain via the quantum 
R-matrix formalism. It is now intriguing to observe that this R-matrix in the limit of 
either A or p+oo defines a constant solution of the Yang-Baxter equation, which is 
very similar to the non-standard braid group-type solutions discussed recently. 

As A +a, we find from equation (9 )  R + R+ , which is equal to 

I1 0 0 01 

(35) 

It is interesting to note that the above form of R+ is similar to the non-standard 
solution of the quantum Yang-Baxter equation. In a future communication we will 
discuss the quantum group generated by such R-matrices. 

Lastly, we note the R-matrix given in equation (14) can also be obtained as a 
symmetry-breaking transformation of the usual six-vertex model in the sense of 
Akutsu-Deguchi-Wadati [8]. 

One of the authors (ND) is grateful' to CSIR for an SRF grant. 
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